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The article presents the results of numerical simulation of the process of mois- 
ture migration in disperse soils with different regimes of freezing and with a 
view to the nonequilibrium effects accompanying the phase transformations of 
water. The results of simulation are compared with data of experimental inves- 
tigations from the literature. 

Among the problem of heat and mass exchange in freezing and thawing soils, the investi- 
gation of the dynamics of moisture redistribution takes up a special place. At present 
there exists a number of publications containing the results of experimental investigations 
of moisture migration in different freezing regimes. The authors of [i, 2] describe experi- 
ments with the one-sided freezing of moist soil samples; the redistribution of moisture in 
a sample of frozen soil affected by a constant temperature gradient is investigated in [3]. 
There are much fewer theoretical works [4, 5] in which such problems are solved. This is 
possibly due to the insufficient utilization of simulation, i.e., the theoretical solution 
of problems of heat and mass exchange whose mathematical statement contains the notions of 
simulating various physical effects and processes accompanying the freezing and thawing of 
disperse materials; the authors of [6, 7] present the results of theoretical amd experimen- 
tal investigations of nonequilibrium crystallization during the freezing of moist soils 
without taking moisture migration into account. The model of crystallization of moisture 
in the soil under isothermal conditions is described in [6]. 

Principal System of Equations. In the one-dimensional case, the system of equations 
describing the nonequilibrium heat and mass exchange during the freezing (thawing) of soils 
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Equations (i) and (2) of this system are the mathematically expressed laws of conservation 
of energy and mass; the third equation describes the kinetics of the phase transitions of 
water [6]. To close the system (1)-(4) it must be complemented by the hypothesis of migra- 
tion. In the given system the migration stream q is determined by the simulation ratio q = 
k =(W -- W)aW/~x, where W is some limiting moisture below which moisture transport in the 
liquid phase ceases. In addition to that, it is assumed here that the magnitude of the mi- 
gration stream is determined by thesame ratio both in the thawed and in the frozen zones. 
It should be pointed out that to this day there does not exist any acceptable method of 
measuring moisture transport in the frozen zone; therefore, the experimental data given in 
various works do not make it possible to present a sufficiently substantiated hypothesis 
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regarding the regularities of moisture migration at temperatures below zero. The authors 
of [3], based solely on their own experiments, arrived meanwhile at the conclusion 
that the expressions for the stream of moisture in the thawed and frozen zones do not differ 
much from each other. It is especially for this reason that in the present article we 
adopted a single hypothesis of migration for both zones. 

The coefficient & in (3) and (4) changes in dependence on the direction of the nonequi- 
librium phase transition (the kinetic model of the thawing of ice was chosen the same as in 
crystallization). The purpose of ~iting this coefficient in Eq. (4) is to express the pe- 
culiarities of operation of the kinetic equation (3) in the following three different cases: 

I OL 1 
i) T<Tof(W ), ~ -- , - -  (W--~of(T))>0. Under these conditions AW = W -- Wof 

�9 cr O~ ~cr 

(T) > 0, i.e., part of the moisture AW is in a nonequilibrium state, and it crystallizes; 
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amount of nonfrozen water is smaller than the equilibrium amount Wof(T). Since here in an 
elementary volume there is ice (L > 0), it thaws; 
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This case corresponds to the thawed zone. 

The system (1)-(4) describes heat transfer, moisture transport in the thawed and frozen 
zones, the phase transition in the spectrum of below-zero temperatures, and the kinetic (re- 
laxation) effects of crystallization of the moisture and of the pressure of the ice. If we 
neglect the kinetic effects in the phase transitions of the moisture, and also its migration, 
then the system (i)-(4) describes the problem of freezing (thawing), taking into account the 
phase transition in the temperature spectrum [8]. Furthermore, in the case of a jumplike 
change of the amount of nonfreezing water Wof(T) at the temperature of the phase transition 
T = Tof , it can be shown that the system (1)-(3) corresponds to the known frontal statement 
of Stefan's problem (see, e.g., [9]). When concrete problems are solved, the system (1)-(4) 
must be complemented with boundary and initial conditions for the functions of T, W, and L. 
A p~culiarity of the given statement is that Eqs. (1)-(4) describe heat and mass exchange 
in both the thawed and frozen zones, and then there is no necessity of specifying additional 
conditions at the mobile phase interface. 

Mathematical Statement of the Problems. It is known that heat capacity and thermal 
conductivity depend on the temperature, the moisture, and icing up of the soil; however, 
the nature of these dependences has not yet been sufficiently studied, and therefore these 
characteristics will henceforth be considered constant and equal in magnitude in the thawed 
and frozen zones. All these simplifications of the initial problem may be considered justi- 
fied as long as qualitative investigations and the description of experimental data are in- 
volved. A more accurate comparison of the theoretical analysis with experiments should, if 
possible, be carried out without such simplifications. 

For further numerical analysis, it is expedient to represent the system (1)-(4) in 
dimensionless form: 
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Here ~ = ~(@of(~) -- @)Bcr + ~[(@ -- @of(~))l]Bme. 

In those problems where the investigated soil, on the whole, is in the frozen state, 
and on its boundaries the temperature remains constant in time, the system (5) may be sim- 
plified. For that we will examine the characteristic times of the transient processes of 
heat and mass transfer, which in the basis of the dimension theory are determined from the 
ratios t1=L2c/~, t2=L2/k Wo With the approximate values of the constants c, %, k, and Wo 
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given in the literature, we can obtain the following inequality: tl << t2. That means that 
the time of the transient process connected with moisture migration is much longer than the 
"thermal" time. Consequently, when we analyze the dynamics of moisture redistribution in 
frozen soils, we may consider the temperature field to be steady. In view of this, system 
(5) may be written in abbreviated form for such problems: 
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Here D = O(8of(m ) -- 8)D~ + o[(0 -- 0 f(m))l]Dme; 0st = est(~) is the steady-state temperature 
distribution. All furt~$r investigations are based on the numerical solution of systems 
(5) and (6), with these or other boundary and initial conditions expressing different freez- 
ing and thawing regimes. 

Below we examine two problems: one-sided freezing of moist soil, and the redistribution 
of moisture in a frozen sample under the effect of a constant temperature gradient. The for- 
mer simulates the heat and mass exchange in a seasonally freezing (thawing) layer, the lat- 
ter may be used for analyzing the processes of moisture redistribution in permafrost rock 
masses. These problems are described by the systems of differential equations {5) and (6), 
respectively, with certain boundary and initial conditions. 

In simulating one-sided freezing, the following initial and boundary conditions are 
adopted: 

0(~, O ) =  00, ~(~ ,  O ) =  1, l(~, 0), ( 7 )  

o (o, F o ) = -  i, o (1, Fo)= Oo, (8) 

8~ (0, F o ) = 0 ,  8 o  (1, F o ) = 0 .  
d--T- T (9) 

Expressions (9) express freezing under conditions of a closed system. 

The solution of the problem of moisture redistribution in a frozen sample is given for 
the following initial and boundary conditions: 

0~(~, O) (~of(0st.), /(~, O ) =  1---O~of(0st.), 

&o (0, T ) =  0, &o (1, T) ~ 0. 
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Here, like with one-sided freezing, it is assumed that the soil is completely moisture in- 
sulated. The steady-state temperature distribution is assumed to be linear, and on the 
boundaries of the examined sample constant values of the dimensionless temperature est(O) = 
i, 8st(l ) = 8o are specified. 

Numerical Simulation. On the axes we plot a uniform grid ~i = ih with time step AFo. 
In the calculations we used an implicit difference scheme, linear relative to the values of 
the functions e, m on the upper time layer. The values of the coefficients B(~ -- mof(8)) 
and ~ -- N were calculated from the values of temperature and moisture on the preceding time 
layer. In finite differences, Eqs. (5) have the form 
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The error of the approximation of the scheme used is O(h a + AFo). The coefficient B 
changes in dependence on the direction of the phase transition crystal--liquid. When S = 

m -- mof(0) > 0, the moisture crystallizes, and then B (0=IB~ r') When the condition S < 0 is 
fulfilled and when there is ice at the examined point , then thawing occurs, i.e., 

B= Bme. 

To calculate the heat and moisture balance, we must integrate the first two equations 
of systems (5) with respect to ~ from 0 to 1 and with respect to Fo from 0 to the running 
value: 

oci~'~~ i - -  Ko !za~ 
b ~ O~ ~ 0 

1 Fo 
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In accordance with (9), this relation is reduced to the form 
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In the count, the following values were calculated: 
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0 0 
1 
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These values, called the disbaiances, characterize the degree of deviation of the numerical 
solution from the accurate solution in the integral sense. In all the calculations the 
values of h and AFo were chosen in such a way that 6QI and 6Q3 did not exceed 1%. The dif- 
ference scheme for system (6) is written analogously. The space and time steps are chosen 
in accordance with the magnitude of the disbalance in the same way as in the previous case. 

One-Sided Freezing. The calculations were carried out for kaolinite clay, whose dimen- 
sionless equilibrium curve of nonfrozen water is expressed by the ratio mof(8) = 0.2/(0.1 -- 
0). The values of the other constants contained in (5) are Bcr = i0, Bme = i00, Ko = i0, 

= 0.05, 0o = 0.83. The parameter p characterizing moisture transport was adopted equal 
to 0, 0.05, and 0.25. Figure 1 shows the distributions of the dimensionless total moisture 
u S along the length of the specimen ~ at different instants, corresponding to p = 0.05 (Fig. 

la) and p = 0.25 (Fig. ib). If there is no migration (p = 0), the total moisture remains 
unchanged, i.e., i~ S = I. In the former case (Fig. la) we find a maximum on the curve of 
total moisture in the frozen zone; this corresponds to the accumulation of moisture in the 
region adjacent to the freezing front. Here the moisture does not manage to migrate to the 
cold face, and it crystallizes D accumulating inside the frozen zone, In the latter case 
the coefficient p is five times as large as in the former case, and here we find a qualita- 
tively different picture -- the moisture migrates through the entire frozen zone and accumu- 
lates in the left side, 

Figure 2 shows the distribution graphs of the function S = m -- mof(~) (7)~ It is char- 
acteristic that when there is no moisture transport (Fig. 2a), the region of nonequilibrium 
phenomena is situated chiefly at the freezing front. An increase of the parameter p~ and 
consequently also of the moisture conductivity, has the effect that the nonequilibrium zone 
becomes more elongated (Fig. 2b), and with certain values of p it occupies the entire region 
of subzero temperatures (Fig. 2c). That means that during a fairly long time, the amount 
of nonfreezing water in the cold part of the sample differs considerably from its equilib- 
rium value. Consequently, in this case the description of the moisture movement, based 
only on the equilibrium curve of nonfreezing water, is incorrect. 

Moisture Distribution in Frozen Soils. In accordance with the remarks explained at the 
beginning of the present article, a simplified system (6) was used in solving the problems 
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Fig. i. Dynamics of the distribution of total moisture in one-sided 
freezing according to the data of numerical simulation with Bcr = i0: 
a) p = 0.05; b) 0.25. 
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Fig. 2. Results of the numerical simulation of the distribution of the 
nonequilibrium function in one-sided freezing: a) p = 0; b) 0.05; c) 0.25. 
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Dynamics of the distribution of total moisture in a frozen 
sample of soil exposed to the effect of a constant temperature gradient: 
a) Dcr = 50; Dme = i00; b) Dcr = 5; Dme = i0 (results of simulation); c) 
experimental data. WS, %; x, cm. 
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Fig. 4. Experimental data on the distribution of total moisture in one- 
sided freezing: 0) at the beginning of the experiment; i, 2, 3) at sub- 
sequent instants. WS.10-3 , kg/m3; H, cm. 

of moisture redistribution under the effect of a constant temperature gradient. The cal- 
culations were carried out for a soil whose nonfreezing water has an equilibrium curve sim- 
ilar to Wof(T) of Kiev clay. The dimensionless function of the nonfreezing water had the 
form mof(0) = 0,205/(--e + 0.714). The other constants assumed the following values: 0o = 
0.143, ~ = 0.5, Dcr = 50, Dme = i00 (Fig. 3a); Dcr = 5, Dme = i0 (Fig. 3b). In the given 
problem the variants differ only in the parameters characterizing the kinetics of phase 
transitions. Figure 3a, b contains the distribution graphs of the total moisture mS(~ , t) 
with respect to t of the length of the sample ~ with different values of dimensionless time. 
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Figure 3a shows a variant corresponding to short crystallization and melting times. Here 
the total moisture assumes the largest value at the cold face and at the central part of 
the sample where the distribution has its maximum. An increase of the crystallization time 
Tcr and of the melting time Tme leads to a blurring of the maximum on the curve of total 
moisture. Beginning with some value of the constants, the maximum u S vanishes, and the en- 
tire moisture migrates to the cold side without accumulating in the central part of the sam- 
ple. However, it follows from Fig. 3a that even when the crystallization and melting times 
are short, the maximum on the curve of total moisture shifts toward temperature decrease, 
and eventually it can be seen that the entire moisture, like in Fig. 3a, moves to the colder 
side. 

Discussion of Results. As noted before, the literature contains information on the 
nature of the water distribution during the freezing of wet soils. The distribution graphs 
of total moisture along the sample at different instants and for different soils, published 
in [i, 2], are shown in Fig. 4. The total moisture W S was determined here according to the 
absorption of gamma rays. Figures 4a, b coincide qualitatively with the results of theoret- 
ical calculations (Fig. la). Figures ib and 4c correspond to the freezing regime in which 
the moisture accumulates at the cold end. The experimental profiles of total moisture W S 
during redistribution of moisture in frozen soil, obtained with the aid of twin samples [3], 
are shown in Fig. 3c. Here we may also speak of qualitative coincidence of the experimental 
data with the results of calculations (Fig. 3a). 

It must be noted that in the notions on simulation discussed in the present article there 
was no place anywhere for the peculiarities of moisture migration when there are ice schlieren. 
This problem requires special investigation, because an ice interlayer closing off the mi- 
gration paths of the moisture may cause a qualitative change of the nature of mass transfer, 
For instance, it is possible that the solid phase of water accumulates in the region of ice 
schlieren, as was observed in [3]. On the whole, a comparison of the results of numerical 
simulation of the process of freezing of moist soils with the experimental data available 
in the literature permits the conclusion that there is qualitative agreement between the 
simulation equations and the physical pattern. 

NOTATION 

2 2 B, length of the sample, m; Bc_~= cb /ITcr; B m_ = cb /I~ , dimensionless parameters ~ 
3 �9 2 me 2 �9 �9 

c, heat capacity of the soil, J/m ~eg; D = b /W0~Trr, Dm~ = b /Wokrm~, dlmenslonless 
2 �9 ~ . . . .  �9 ~ �9 �9 2 parameters; Fo = It/cb , Fourler numbers; ~, space step; k, molsture conductlvlty, m /sec; 

Ko = Wo• Kossovich number; L, ice ratio, a.u.; I = L/Wo, dimensionless ice ratio; 
p = Wokc/l, dimensionless parameter; q, migration flow of moisture, m/sec; S = ~ -- ~of(e), 
nonequilibrium function; T, soil temperature, ~ To, initial soil temperature, ~ TI, tem- 
perature of the cold sample wall, ~ Tof(W), temperature of incipient freezing of the soil, 
~ t, time, sec; t' = kWot/b 2, dimensionless time of moisture migration; W, moisture, a.u.; 
Wo, initial moisture, a.u.; W, minimum moisture below which moisture transport in the liquid 
phase ceases, a.u.; Wof(T) , curve of nonfreezing water, a.u.; WS, total moisture, a.u.; 

= W/Wo, dimensionless moisture; ~ = W/Wo, dimensionless limiting moisture; ~of(e) = Wof�9 
n 

(T)/~o, dimensionless curve of nonfreezing water; ~i, dimensionless moisture calculated at 
the i-th node at the instant Fo = nAFo; AFo, time step; ~, latent heat of the phase transi- 
tion water--ice, J/m3; I, thermal conductivity of the soil, W/modeg; o(T), Heaviside function; 

= To/ITII, dimensionless temperature; 0o = To/ITII, dimensionless initial temperature; 
e~, dimensionless temperature calculated at the i-th node at the instant Fo = nAFo; 8of(~) ~ 
dimensionless temperature of incipient freezing of soil with moisture ~; T, relaxation time, 
sec; Tcr , Tme , crystallization and melting time, respectively, sec; ~ = x/b, dimensionless 
space coordinate. 
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CALCULATION AND DESIGN OF RADIATORS FOR THE AIR COOLING SYSTEM 

OF A GROUP OF INSTRUMENTS 

O. B. Aga, G. N. Dul'nev, 
and B. V. Pol'shchikov 

UDC 536.24 

The article suggests a method of selecting the cooling regime and of planning the 
design of a radiator for a group of electronic instruments. 

i~_ Thermal M0del and An - @lysis of the Efficiency of the Radiators. Various radiators 
have found widespread application in electronics, radio engineering, electrical engineering, 
and other branches of instrument making for the purpose of cooling thermally loaded elements. 

In design these devices differ according to the kind of developed surface [i]: lamellar, 
finned, pin type, "crab" type, louver type, and wire loop. The magnitude of the scattered 
power is substantially affected by the following geometric parameters: dimensions of the 
base (Lx, Ly for rectangular radiators; D -- the diameter -- for circular radiators), height 
H and thickness d of the fin or pin, and pitch S between them. For wire-loop radiators we 
have to take into account the height of a turn H, the wire diameter d, the pitch of cooling 
S, the spacing of the coils S', and the space factor of the channel ~, equal to the ratio of 
the cross-sectional area of the coils to the cross-sectional area of the channel. The values 
of the above parameters for the industrially produced radiators found expression in the cor- 
responding standard and technical documentation [1-3]. 

For the individual cooling with natural or forced ventilation of low-power instruments, 
it is usual to use lamellar, finned, pin type, or "crab" type radiators. When the require- 
ments as to the weight of the instrument are stringent, it is recommended to use pin type 
radiators; when the requirements concern mainly the size, finned radiators are recommended. 
Louver radiators with forced ventilation are used for cooling medium-power instruments; for 
groups of low- and medium-power instruments, single-group radiators are used, mostly finned 
or pin type radiators; they are economically and technologically more advantageous than in- 
dividual radiators, 

Investigation of the heat exchange of various types of radiators made it possible to 
plot the approximate dependence of the mean superheating ~S = ts -- tc of the base with area 
Sp = Lx.Ly on the specific load P/Sp with natural and forced ventilation (Fig. I), from 
which it is then possible to choose the type of radiator and the nature of the heat exchange, 
The area bounded by the curves ai--b i pertain to a certain type of radiator with free or 
forced ventilation. For instance, the area al--b I encompasses the values of P/Sp for differ- 
ent sizes of lamellar radiators with natural ventilation, a~--b~ with forced ventilation, etc. 

To characterize the heat exchange properties of radiators, the correlation between the 
mean superheating O S of the base, the scattered power P, the effective heat transfer coef- 
ficient ~ef, the thermal conductivity ~E, and the thermal resistance R~ ~s often used: 
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